Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blockwise Based Detection of Local Defects (1906.02374v1)

Published 6 Jun 2019 in cs.CV

Abstract: Print quality is an important criterion for a printer's performance. The detection, classification, and assessment of printing defects can reflect the printer's working status and help to locate mechanical problems inside. To handle all these questions, an efficient algorithm is needed to replace the traditionally visual checking method. In this paper, we focus on pages with local defects including gray spots and solid spots. We propose a coarse-to-fine method to detect local defects in a block-wise manner, and aggregate the blockwise attributes to generate the feature vector of the whole test page for a further ranking task. In the detection part, we first select candidate regions by thresholding a single feature. Then more detailed features of candidate blocks are calculated and sent to a decision tree that is previously trained on our training dataset. The final result is given by the decision tree model to control the false alarm rate while maintaining the required miss rate. Our algorithm is proved to be effective in detecting and classifying local defects compared with previous methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.