Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-Stream Region Convolutional 3D Network for Temporal Activity Detection (1906.02182v1)

Published 5 Jun 2019 in cs.CV

Abstract: We address the problem of temporal activity detection in continuous, untrimmed video streams. This is a difficult task that requires extracting meaningful spatio-temporal features to capture activities, accurately localizing the start and end times of each activity. We introduce a new model, Region Convolutional 3D Network (R-C3D), which encodes the video streams using a three-dimensional fully convolutional network, then generates candidate temporal regions containing activities and finally classifies selected regions into specific activities. Computation is saved due to the sharing of convolutional features between the proposal and the classification pipelines. We further improve the detection performance by efficiently integrating an optical flow based motion stream with the original RGB stream. The two-stream network is jointly optimized by fusing the flow and RGB feature maps at different levels. Additionally, the training stage incorporates an online hard example mining strategy to address the extreme foreground-background imbalance typically observed in any detection pipeline. Instead of heuristically sampling the candidate segments for the final activity classification stage, we rank them according to their performance and only select the worst performers to update the model. This improves the model without heavy hyper-parameter tuning. Extensive experiments on three benchmark datasets are carried out to show superior performance over existing temporal activity detection methods. Our model achieves state-of-the-art results on the THUMOS'14 and Charades datasets. We further demonstrate that our model is a general temporal activity detection framework that does not rely on assumptions about particular dataset properties by evaluating our approach on the ActivityNet dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Huijuan Xu (30 papers)
  2. Abir Das (20 papers)
  3. Kate Saenko (178 papers)
Citations (43)

Summary

We haven't generated a summary for this paper yet.