Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The FacT: Taming Latent Factor Models for Explainability with Factorization Trees (1906.02037v1)

Published 3 Jun 2019 in cs.IR, cs.LG, and stat.ML

Abstract: Latent factor models have achieved great success in personalized recommendations, but they are also notoriously difficult to explain. In this work, we integrate regression trees to guide the learning of latent factor models for recommendation, and use the learnt tree structure to explain the resulting latent factors. Specifically, we build regression trees on users and items respectively with user-generated reviews, and associate a latent profile to each node on the trees to represent users and items. With the growth of regression tree, the latent factors are gradually refined under the regularization imposed by the tree structure. As a result, we are able to track the creation of latent profiles by looking into the path of each factor on regression trees, which thus serves as an explanation for the resulting recommendations. Extensive experiments on two large collections of Amazon and Yelp reviews demonstrate the advantage of our model over several competitive baseline algorithms. Besides, our extensive user study also confirms the practical value of explainable recommendations generated by our model.

Citations (62)

Summary

We haven't generated a summary for this paper yet.