Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonatomic Aggregative Games with Infinitely Many Types (1906.01986v1)

Published 4 Jun 2019 in math.OC and cs.GT

Abstract: We define and analyze the notion of variational Wardrop equilibrium for nonatomic aggregative games with an infinity of players types. These equilibria are characterized through an infinite-dimensional variational inequality. We show, under monotonicity conditions, a convergence theorem enables to approximate such an equilibrium with arbitrary precision. To this end, we introduce a sequence of nonatomic games with a finite number of players types, which approximates the initial game. We show the existence of a symmetric Wardrop equilibrium in each of these games. We prove that those symmetric equilibria converge to an equilibrium of the infinite game, and that they can be computed as solutions of finite-dimensional variational inequalities. The model is illustrated through an example from smart grids: the description of a large population of electricity consumers by a parametric distribution gives a nonatomic game with an infinity of different players types, with actions subject to coupling constraints.

Citations (4)

Summary

We haven't generated a summary for this paper yet.