2000 character limit reached
A Note on Estimates for Elliptic Systems with $L^1$ Data (1906.01556v1)
Published 4 Jun 2019 in math.AP, math.CA, and math.FA
Abstract: In this paper we give necessary and sufficient conditions on the compatibility of a $k$th order homogeneous linear elliptic differential operator $\mathbb{A}$ and differential constraint $\mathcal{C}$ for solutions of \begin{align*} \mathbb{A} u=f\quad\text{subject to}\quad \mathcal{C} f=0\quad\text{ in }\mathbb{R}n \end{align*} to satisfy the estimates \begin{align*} |D{k-j}u|_{L{\frac{n}{n-j}}(\mathbb{R}n)}\leq c|f|{L1(\mathbb{R}n)} \end{align*} for $j\in {1,\ldots,\min{k,n-1}}$ and \begin{align*} |D{k-n}u|{L{\infty}(\mathbb{R}n)}\leq c|f|_{L1(\mathbb{R}n)} \end{align*} when $k\geq n$.