Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Review Rating Prediction with Hierarchical Attentions and Latent Factors (1906.01511v1)

Published 29 May 2019 in cs.IR and cs.CL

Abstract: Text reviews can provide rich useful semantic information for modeling users and items, which can benefit rating prediction in recommendation. Different words and reviews may have different informativeness for users or items. Besides, different users and items should be personalized. Most existing works regard all reviews equally or utilize a general attention mechanism. In this paper, we propose a hierarchical attention model fusing latent factor model for rating prediction with reviews, which can focus on important words and informative reviews. Specially, we use the factor vectors of Latent Factor Model to guide the attention network and combine the factor vectors with feature representation learned from reviews to predict the final ratings. Experiments on real-world datasets validate the effectiveness of our approach.

Citations (11)

Summary

We haven't generated a summary for this paper yet.