Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algebraic representation of dual scalar products and stabilization of saddle point problems (1906.01296v2)

Published 4 Jun 2019 in math.NA and cs.NA

Abstract: We provide a systematic way to design computable bilinear forms which, on the class of subspaces $W* \subseteq \mathcal{V}'$ that can be obtained by duality from a given finite dimensional subspace $W$ of an Hilbert space $\mathcal{V}$, are spectrally equivalent to the scalar product of $\mathcal{V}'$. Such a bilinear form can be used to build a stabilized discretization algorithm for the solution of an abstract saddle point problem allowing to decouple, in the choice of the discretization spaces, the requirements related to the approximation from the inf-sup compatibility condition, which, as we show, can not be completely avoided.

Citations (5)

Summary

We haven't generated a summary for this paper yet.