Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Exploitation of Policy Imitation (1906.01121v1)

Published 3 Jun 2019 in cs.LG, cs.AI, cs.CR, and stat.ML

Abstract: This paper investigates a class of attacks targeting the confidentiality aspect of security in Deep Reinforcement Learning (DRL) policies. Recent research have established the vulnerability of supervised machine learning models (e.g., classifiers) to model extraction attacks. Such attacks leverage the loosely-restricted ability of the attacker to iteratively query the model for labels, thereby allowing for the forging of a labeled dataset which can be used to train a replica of the original model. In this work, we demonstrate the feasibility of exploiting imitation learning techniques in launching model extraction attacks on DRL agents. Furthermore, we develop proof-of-concept attacks that leverage such techniques for black-box attacks against the integrity of DRL policies. We also present a discussion on potential solution concepts for mitigation techniques.

Citations (23)

Summary

We haven't generated a summary for this paper yet.