Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantitative Propagation of Chaos in the bimolecular chemical reaction-diffusion model (1906.01051v2)

Published 3 Jun 2019 in math.AP and math.PR

Abstract: We study a stochastic system of $N$ interacting particles which models bimolecular chemical reaction-diffusion. In this model, each particle $i$ carries two attributes: the spatial location $X_ti\in \mathbb{T}d$, and the type $\Xi_ti\in {1,\cdots,n}$. While $X_ti$ is a standard (independent) diffusion process, the evolution of the type $\Xi_ti$ is described by pairwise interactions between different particles under a series of chemical reactions described by a chemical reaction network. We prove that in the large particle limit the stochastic dynamics converges to a mean field limit which is described by a nonlocal reaction-diffusion partial differential equation. In particular, we obtain a quantitative propagation of chaos result for the interacting particle system. Our proof is based on the relative entropy method used recently by Jabin and Wang \cite{JW18}. The key ingredient of the relative entropy method is a large deviation estimate for a special partition function, which was proved previously by technical combinatorial estimates. We give a simple probabilistic proof based on a novel martingale argument.

Summary

We haven't generated a summary for this paper yet.