Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Alternating quotients of right-angled Coxeter groups (1906.00857v3)

Published 3 Jun 2019 in math.GT and math.GR

Abstract: Let $W$ be a right-angled Coxeter group corresponding to a finite non-discrete graph $\mathcal{G}$ with at least $3$ vertices. Our main theorem says that $\mathcal{G}c$ is connected if and only if for any infinite index quasiconvex subgroup $H$ of $W$ and any finite subset ${ \gamma_1, \ldots , \gamma_n } \subset W \setminus H$ there is a surjection $f$ from $W$ to a finite alternating group such that $f (\gamma_i) \notin f (H)$. A corollary is that a right-angled Artin group splits as a direct product of cyclic groups and groups with many alternating quotients in the above sense. Similarly, finitely generated subgroups of closed, orientable, hyperbolic surface groups can be separated from finitely many elements in an alternating quotient, answering positively a conjecture of Wilton.

Summary

We haven't generated a summary for this paper yet.