Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Every nonnegative real number is an abelian critical exponent (1906.00665v1)

Published 3 Jun 2019 in cs.FL and math.CO

Abstract: The abelian critical exponent of an infinite word $w$ is defined as the maximum ratio between the exponent and the period of an abelian power occurring in $w$. It was shown by Fici et al. that the set of finite abelian critical exponents of Sturmian words coincides with the Lagrange spectrum. This spectrum contains every large enough positive real number. We construct words whose abelian critical exponents fill the remaining gaps, that is, we prove that for each nonnegative real number $\theta$ there exists an infinite word having abelian critical exponent $\theta$. We also extend this result to the $k$-abelian setting.

Citations (4)

Summary

We haven't generated a summary for this paper yet.