Papers
Topics
Authors
Recent
Search
2000 character limit reached

Biomedical Named Entity Recognition via Reference-Set Augmented Bootstrapping

Published 1 Jun 2019 in cs.LG, cs.CL, and stat.ML | (1906.00282v1)

Abstract: We present a weakly-supervised data augmentation approach to improve Named Entity Recognition (NER) in a challenging domain: extracting biomedical entities (e.g., proteins) from the scientific literature. First, we train a neural NER (NNER) model over a small seed of fully-labeled examples. Second, we use a reference set of entity names (e.g., proteins in UniProt) to identify entity mentions with high precision, but low recall, on an unlabeled corpus. Third, we use the NNER model to assign weak labels to the corpus. Finally, we retrain our NNER model iteratively over the augmented training set, including the seed, the reference-set examples, and the weakly-labeled examples, which improves model performance. We show empirically that this augmented bootstrapping process significantly improves NER performance, and discuss the factors impacting the efficacy of the approach.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.