Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On problems related to crossing families (1906.00191v1)

Published 1 Jun 2019 in cs.CG

Abstract: Given a set of points in the plane, a \emph{crossing family} is a collection of segments, each joining two of the points, such that every two segments intersect internally. Aronov et al. [Combinatorica,~14(2):127-134,~1994] proved that any set of $n$ points contains a crossing family of size $\Omega(\sqrt{n})$. They also mentioned that there exist point sets whose maximum crossing family uses at most $\frac{n}{2}$ of the points. We improve the upper bound on the size of crossing families to $5\lceil \frac{n}{24} \rceil$. We also introduce a few generalizations of crossing families, and give several lower and upper bounds on our generalized notions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.