Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Table2Vec: Neural Word and Entity Embeddings for Table Population and Retrieval (1906.00041v1)

Published 31 May 2019 in cs.IR, cs.CL, and cs.LG

Abstract: Tables contain valuable knowledge in a structured form. We employ neural LLMing approaches to embed tabular data into vector spaces. Specifically, we consider different table elements, such caption, column headings, and cells, for training word and entity embeddings. These embeddings are then utilized in three particular table-related tasks, row population, column population, and table retrieval, by incorporating them into existing retrieval models as additional semantic similarity signals. Evaluation results show that table embeddings can significantly improve upon the performance of state-of-the-art baselines.

Citations (99)

Summary

We haven't generated a summary for this paper yet.