Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PAC-Bayes Un-Expected Bernstein Inequality (1905.13367v2)

Published 31 May 2019 in cs.LG and stat.ML

Abstract: We present a new PAC-Bayesian generalization bound. Standard bounds contain a $\sqrt{L_n \cdot \KL/n}$ complexity term which dominates unless $L_n$, the empirical error of the learning algorithm's randomized predictions, vanishes. We manage to replace $L_n$ by a term which vanishes in many more situations, essentially whenever the employed learning algorithm is sufficiently stable on the dataset at hand. Our new bound consistently beats state-of-the-art bounds both on a toy example and on UCI datasets (with large enough $n$). Theoretically, unlike existing bounds, our new bound can be expected to converge to $0$ faster whenever a Bernstein/Tsybakov condition holds, thus connecting PAC-Bayesian generalization and {\em excess risk\/} bounds---for the latter it has long been known that faster convergence can be obtained under Bernstein conditions. Our main technical tool is a new concentration inequality which is like Bernstein's but with $X2$ taken outside its expectation.

Citations (42)

Summary

We haven't generated a summary for this paper yet.