Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sum-of-squares meets square loss: Fast rates for agnostic tensor completion (1905.13283v1)

Published 30 May 2019 in cs.LG, cs.DS, math.ST, stat.ML, and stat.TH

Abstract: We study tensor completion in the agnostic setting. In the classical tensor completion problem, we receive $n$ entries of an unknown rank-$r$ tensor and wish to exactly complete the remaining entries. In agnostic tensor completion, we make no assumption on the rank of the unknown tensor, but attempt to predict unknown entries as well as the best rank-$r$ tensor. For agnostic learning of third-order tensors with the square loss, we give the first polynomial time algorithm that obtains a "fast" (i.e., $O(1/n)$-type) rate improving over the rate obtained by reduction to matrix completion. Our prediction error rate to compete with the best $d\times{}d\times{}d$ tensor of rank-$r$ is $\tilde{O}(r{2}d{3/2}/n)$. We also obtain an exact oracle inequality that trades off estimation and approximation error. Our algorithm is based on the degree-six sum-of-squares relaxation of the tensor nuclear norm. The key feature of our analysis is to show that a certain characterization for the subgradient of the tensor nuclear norm can be encoded in the sum-of-squares proof system. This unlocks the standard toolbox for localization of empirical processes under the square loss, and allows us to establish restricted eigenvalue-type guarantees for various tensor regression models, with tensor completion as a special case. The new analysis of the relaxation complements Barak and Moitra (2016), who gave slow rates for agnostic tensor completion, and Potechin and Steurer (2017), who gave exact recovery guarantees for the noiseless setting. Our techniques are user-friendly, and we anticipate that they will find use elsewhere.

Citations (4)

Summary

We haven't generated a summary for this paper yet.