Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persistent homology detects curvature (1905.13196v3)

Published 30 May 2019 in cs.CG, cs.LG, math.AT, and stat.ML

Abstract: In topological data analysis, persistent homology is used to study the "shape of data". Persistent homology computations are completely characterized by a set of intervals called a bar code. It is often said that the long intervals represent the "topological signal" and the short intervals represent "noise". We give evidence to dispute this thesis, showing that the short intervals encode geometric information. Specifically, we prove that persistent homology detects the curvature of disks from which points have been sampled. We describe a general computational framework for solving inverse problems using the average persistence landscape, a continuous mapping from metric spaces with a probability measure to a Hilbert space. In the present application, the average persistence landscapes of points sampled from disks of constant curvature results in a path in this Hilbert space which may be learned using standard tools from statistical and machine learning.

Citations (63)

Summary

We haven't generated a summary for this paper yet.