Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On stochastic gradient Langevin dynamics with dependent data streams: the fully non-convex case (1905.13142v4)

Published 30 May 2019 in math.ST, math.PR, stat.ML, and stat.TH

Abstract: We consider the problem of sampling from a target distribution, which is \emph {not necessarily logconcave}, in the context of empirical risk minimization and stochastic optimization as presented in Raginsky et al. (2017). Non-asymptotic analysis results are established in the $L1$-Wasserstein distance for the behaviour of Stochastic Gradient Langevin Dynamics (SGLD) algorithms. We allow the estimation of gradients to be performed even in the presence of \emph{dependent} data streams. Our convergence estimates are sharper and \emph{uniform} in the number of iterations, in contrast to those in previous studies.

Citations (43)

Summary

We haven't generated a summary for this paper yet.