Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Purchase Prediction of Market Baskets with Wasserstein-Based Sequence Matching (1905.13131v2)

Published 24 May 2019 in cs.IR and cs.LG

Abstract: Personalization in marketing aims at improving the shopping experience of customers by tailoring services to individuals. In order to achieve this, businesses must be able to make personalized predictions regarding the next purchase. That is, one must forecast the exact list of items that will comprise the next purchase, i.e., the so-called market basket. Despite its relevance to firm operations, this problem has received surprisingly little attention in prior research, largely due to its inherent complexity. In fact, state-of-the-art approaches are limited to intuitive decision rules for pattern extraction. However, the simplicity of the pre-coded rules impedes performance, since decision rules operate in an autoregressive fashion: the rules can only make inferences from past purchases of a single customer without taking into account the knowledge transfer that takes place between customers. In contrast, our research overcomes the limitations of pre-set rules by contributing a novel predictor of market baskets from sequential purchase histories: our predictions are based on similarity matching in order to identify similar purchase habits among the complete shopping histories of all customers. Our contributions are as follows: (1) We propose similarity matching based on subsequential dynamic time warping (SDTW) as a novel predictor of market baskets. Thereby, we can effectively identify cross-customer patterns. (2) We leverage the Wasserstein distance for measuring the similarity among embedded purchase histories. (3) We develop a fast approximation algorithm for computing a lower bound of the Wasserstein distance in our setting. An extensive series of computational experiments demonstrates the effectiveness of our approach. The accuracy of identifying the exact market baskets based on state-of-the-art decision rules from the literature is outperformed by a factor of 4.0.

Citations (13)

Summary

We haven't generated a summary for this paper yet.