Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Deep Learning for Ultra-reliable and Low-latency Communications (1905.13014v2)

Published 26 Apr 2019 in cs.NI, eess.SP, and stat.ML

Abstract: In this paper, we study how to solve resource allocation problems in ultra-reliable and low-latency communications by unsupervised deep learning, which often yield functional optimization problems with quality-of-service (QoS) constraints. We take a joint power and bandwidth allocation problem as an example, which minimizes the total bandwidth required to guarantee the QoS of each user in terms of the delay bound and overall packet loss probability. The global optimal solution is found in a symmetric scenario. A neural network was introduced to find an approximated optimal solution in general scenarios, where the QoS is ensured by using the property that the optimal solution should satisfy as the "supervision signal". Simulation results show that the learning-based solution performs the same as the optimal solution in the symmetric scenario, and can save around 40% bandwidth with respect to the state-of-the-art policy.

Citations (15)

Summary

We haven't generated a summary for this paper yet.