Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Paraphrasing without Translation (1905.12752v1)

Published 29 May 2019 in cs.LG, cs.CL, and stat.ML

Abstract: Paraphrasing exemplifies the ability to abstract semantic content from surface forms. Recent work on automatic paraphrasing is dominated by methods leveraging Machine Translation (MT) as an intermediate step. This contrasts with humans, who can paraphrase without being bilingual. This work proposes to learn paraphrasing models from an unlabeled monolingual corpus only. To that end, we propose a residual variant of vector-quantized variational auto-encoder. We compare with MT-based approaches on paraphrase identification, generation, and training augmentation. Monolingual paraphrasing outperforms unsupervised translation in all settings. Comparisons with supervised translation are more mixed: monolingual paraphrasing is interesting for identification and augmentation; supervised translation is superior for generation.

Citations (60)

Summary

We haven't generated a summary for this paper yet.