Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heterogeneous causal effects with imperfect compliance: a Bayesian machine learning approach (1905.12707v4)

Published 29 May 2019 in stat.ME, cs.LG, and stat.ML

Abstract: This paper introduces an innovative Bayesian machine learning algorithm to draw interpretable inference on heterogeneous causal effects in the presence of imperfect compliance (e.g., under an irregular assignment mechanism). We show, through Monte Carlo simulations, that the proposed Bayesian Causal Forest with Instrumental Variable (BCF-IV) methodology outperforms other machine learning techniques tailored for causal inference in discovering and estimating the heterogeneous causal effects while controlling for the familywise error rate (or - less stringently - for the false discovery rate) at leaves' level. BCF-IV sheds a light on the heterogeneity of causal effects in instrumental variable scenarios and, in turn, provides the policy-makers with a relevant tool for targeted policies. Its empirical application evaluates the effects of additional funding on students' performances. The results indicate that BCF-IV could be used to enhance the effectiveness of school funding on students' performance.

Citations (13)

Summary

We haven't generated a summary for this paper yet.