Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smooth Shells: Multi-Scale Shape Registration with Functional Maps (1905.12512v2)

Published 29 May 2019 in cs.CV and cs.GR

Abstract: We propose a novel 3D shape correspondence method based on the iterative alignment of so-called smooth shells. Smooth shells define a series of coarse-to-fine shape approximations designed to work well with multiscale algorithms. The main idea is to first align rough approximations of the geometry and then add more and more details to refine the correspondence. We fuse classical shape registration with Functional Maps by embedding the input shapes into an intrinsic-extrinsic product space. Moreover, we disambiguate intrinsic symmetries by applying a surrogate based Markov chain Monte Carlo initialization. Our method naturally handles various types of noise that commonly occur in real scans, like non-isometry or incompatible meshing. Finally, we demonstrate state-of-the-art quantitative results on several datasets and show that our pipeline produces smoother, more realistic results than other automatic matching methods in real world applications.

Citations (80)

Summary

We haven't generated a summary for this paper yet.