Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AsymDPOP: Complete Inference for Asymmetric Distributed Constraint Optimization Problems (1905.11828v2)

Published 28 May 2019 in cs.MA

Abstract: Asymmetric distributed constraint optimization problems (ADCOPs) are an emerging model for coordinating agents with personal preferences. However, the existing inference-based complete algorithms which use local eliminations cannot be applied to ADCOPs, as the parent agents are required to transfer their private functions to their children. Rather than disclosing private functions explicitly to facilitate local eliminations, we solve the problem by enforcing delayed eliminations and propose AsymDPOP, the first inference-based complete algorithm for ADCOPs. To solve the severe scalability problems incurred by delayed eliminations, we propose to reduce the memory consumption by propagating a set of smaller utility tables instead of a joint utility table, and to reduce the computation efforts by sequential optimizations instead of joint optimizations. The empirical evaluation indicates that AsymDPOP significantly outperforms the state-of-the-arts, as well as the vanilla DPOP with PEAV formulation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.