Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Skew key polynomials and a generalized Littlewood-Richardson rule (1905.11526v3)

Published 27 May 2019 in math.CO

Abstract: Young's lattice is a partial order on integer partitions whose saturated chains correspond to standard Young tableaux, one type of combinatorial object that generates the Schur basis for symmetric functions. Generalizing Young's lattice, we introduce a new partial order on weak compositions that we call the key poset. Saturated chains in this poset correspond to standard key tableaux, the combinatorial objects that generate the key polynomials, a nonsymmetric polynomial generalization of the Schur basis. Generalizing skew Schur functions, we define skew key polynomials in terms of this new poset. Using weak dual equivalence, we give a nonnegative weak composition Littlewood-Richardson rule for the key expansion of skew key polynomials, generalizing the flagged Littlewood-Richardson rule of Reiner and Shimozono.

Summary

We haven't generated a summary for this paper yet.