Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Abstraction Mechanisms Predict Generalization in Deep Neural Networks (1905.11515v2)

Published 27 May 2019 in cs.LG, q-bio.NC, and stat.ML

Abstract: A longstanding problem for Deep Neural Networks (DNNs) is understanding their puzzling ability to generalize well. We approach this problem through the unconventional angle of \textit{cognitive abstraction mechanisms}, drawing inspiration from recent neuroscience work, allowing us to define the Cognitive Neural Activation metric (CNA) for DNNs, which is the correlation between information complexity (entropy) of given input and the concentration of higher activation values in deeper layers of the network. The CNA is highly predictive of generalization ability, outperforming norm-and-margin-based generalization metrics on an extensive evaluation of over 100 dataset-and-network-architecture combinations, especially in cases where additive noise is present and/or training labels are corrupted. These strong empirical results show the usefulness of CNA as a generalization metric, and encourage further research on the connection between information complexity and representations in the deeper layers of networks in order to better understand the generalization capabilities of DNNs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com