Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parallel and Communication Avoiding Least Angle Regression (1905.11340v3)

Published 27 May 2019 in cs.LG and stat.ML

Abstract: We are interested in parallelizing the Least Angle Regression (LARS) algorithm for fitting linear regression models to high-dimensional data. We consider two parallel and communication avoiding versions of the basic LARS algorithm. The two algorithms have different asymptotic costs and practical performance. One offers more speedup and the other produces more accurate output. The first is bLARS, a block version of LARS algorithm, where we update b columns at each iteration. Assuming that the data are row-partitioned, bLARS reduces the number of arithmetic operations, latency, and bandwidth by a factor of b. The second is Tournament-bLARS (T-bLARS), a tournament version of LARS where processors compete by running several LARS computations in parallel to choose b new columns to be added in the solution. Assuming that the data are column-partitioned, T-bLARS reduces latency by a factor of b. Similarly to LARS, our proposed methods generate a sequence of linear models. We present extensive numerical experiments that illustrate speedups up to 4x compared to LARS without any compromise in solution quality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.