Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Chan-Vese Model with Elastica and Landmark Constraints for Image Segmentation (1905.11192v2)

Published 27 May 2019 in cs.CV

Abstract: In order to completely separate objects with large sections of occluded boundaries in an image, we devise a new variational level set model for image segmentation combining the Chan-Vese model with elastica and landmark constraints. For computational efficiency, we design its Augmented Lagrangian Method (ALM) or Alternating Direction Method of Multiplier (ADMM) method by introducing some auxiliary variables, Lagrange multipliers, and penalty parameters. In each loop of alternating iterative optimization, the sub-problems of minimization can be easily solved via the Gauss-Seidel iterative method and generalized soft thresholding formulas with projection, respectively. Numerical experiments show that the proposed model can not only recover larger broken boundaries but can also improve segmentation efficiency, as well as decrease the dependence of segmentation on parameter tuning and initialization.

Citations (3)

Summary

We haven't generated a summary for this paper yet.