Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally Differentially Private Minimum Finding (1905.11067v1)

Published 27 May 2019 in math.ST, cs.CR, cs.LG, and stat.TH

Abstract: We investigate a problem of finding the minimum, in which each user has a real value and we want to estimate the minimum of these values under the local differential privacy constraint. We reveal that this problem is fundamentally difficult, and we cannot construct a mechanism that is consistent in the worst case. Instead of considering the worst case, we aim to construct a private mechanism whose error rate is adaptive to the easiness of estimation of the minimum. As a measure of easiness, we introduce a parameter $\alpha$ that characterizes the fatness of the minimum-side tail of the user data distribution. As a result, we reveal that the mechanism can achieve $O((\ln6N/\epsilon2N){1/2\alpha})$ error without knowledge of $\alpha$ and the error rate is near-optimal in the sense that any mechanism incurs $\Omega((1/\epsilon2N){1/2\alpha})$ error. Furthermore, we demonstrate that our mechanism outperforms a naive mechanism by empirical evaluations on synthetic datasets. Also, we conducted experiments on the MovieLens dataset and a purchase history dataset and demonstrate that our algorithm achieves $\tilde{O}((1/N){1/2\alpha})$ error adaptively to $\alpha$.

Summary

We haven't generated a summary for this paper yet.