Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hybrid model for predicting human physical activity status from lifelogging data (1905.10891v2)

Published 26 May 2019 in cs.CY, cs.LG, and cs.NE

Abstract: One trend in the recent healthcare transformations is people are encouraged to monitor and manage their health based on their daily diets and physical activity habits. However, much attention of the use of operational research and analytical models in healthcare has been paid to the systematic level such as country or regional policy making or organisational issues. This paper proposes a model concerned with healthcare analytics at the individual level, which can predict human physical activity status from sequential lifelogging data collected from wearable sensors. The model has a two-stage hybrid structure (in short, MOGP-HMM) -- a multi-objective genetic programming (MOGP) algorithm in the first stage to reduce the dimensions of lifelogging data and a hidden Markov model (HMM) in the second stage for activity status prediction over time. It can be used as a decision support tool to provide real-time monitoring, statistical analysis and personalized advice to individuals, encouraging positive attitudes towards healthy lifestyles. We validate the model with the real data collected from a group of participants in the UK, and compare it with other popular two-stage hybrid models. Our experimental results show that the MOGP-HMM can achieve comparable performance. To the best of our knowledge, this is the very first study that uses the MOGP in the hybrid two-stage structure for individuals' activity status prediction. It fits seamlessly with the current trend in the UK healthcare transformation of patient empowerment as well as contributing to a strategic development for more efficient and cost-effective provision of healthcare.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ji Ni (1 paper)
  2. Bowei Chen (22 papers)
  3. Nigel M. Allinson (1 paper)
  4. Xujiong Ye (16 papers)
Citations (17)