Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equal Opportunity and Affirmative Action via Counterfactual Predictions (1905.10870v2)

Published 26 May 2019 in stat.ML and cs.LG

Abstract: Machine learning (ML) can automate decision-making by learning to predict decisions from historical data. However, these predictors may inherit discriminatory policies from past decisions and reproduce unfair decisions. In this paper, we propose two algorithms that adjust fitted ML predictors to make them fair. We focus on two legal notions of fairness: (a) providing equal opportunity (EO) to individuals regardless of sensitive attributes and (b) repairing historical disadvantages through affirmative action (AA). More technically, we produce fair EO and AA predictors by positing a causal model and considering counterfactual decisions. We prove that the resulting predictors are theoretically optimal in predictive performance while satisfying fairness. We evaluate the algorithms, and the trade-offs between accuracy and fairness, on datasets about admissions, income, credit and recidivism.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yixin Wang (103 papers)
  2. Dhanya Sridhar (23 papers)
  3. David M. Blei (110 papers)
Citations (18)