Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Precision-Recall Curves Using Information Divergence Frontiers (1905.10768v2)

Published 26 May 2019 in cs.LG and stat.ML

Abstract: Despite the tremendous progress in the estimation of generative models, the development of tools for diagnosing their failures and assessing their performance has advanced at a much slower pace. Recent developments have investigated metrics that quantify which parts of the true distribution is modeled well, and, on the contrary, what the model fails to capture, akin to precision and recall in information retrieval. In this paper, we present a general evaluation framework for generative models that measures the trade-off between precision and recall using R\'enyi divergences. Our framework provides a novel perspective on existing techniques and extends them to more general domains. As a key advantage, this formulation encompasses both continuous and discrete models and allows for the design of efficient algorithms that do not have to quantize the data. We further analyze the biases of the approximations used in practice.

Citations (4)

Summary

We haven't generated a summary for this paper yet.