Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Variational Bayes: A report on approaches and applications (1905.10744v1)

Published 26 May 2019 in cs.LG and stat.ML

Abstract: Deep neural networks have achieved impressive results on a wide variety of tasks. However, quantifying uncertainty in the network's output is a challenging task. Bayesian models offer a mathematical framework to reason about model uncertainty. Variational methods have been used for approximating intractable integrals that arise in Bayesian inference for neural networks. In this report, we review the major variational inference concepts pertinent to Bayesian neural networks and compare various approximation methods used in literature. We also talk about the applications of variational bayes in Reinforcement learning and continual learning.

Citations (2)

Summary

We haven't generated a summary for this paper yet.