Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirical Risk Minimization in the Interpolating Regime with Application to Neural Network Learning (1905.10686v2)

Published 25 May 2019 in stat.ML and cs.LG

Abstract: A common strategy to train deep neural networks (DNNs) is to use very large architectures and to train them until they (almost) achieve zero training error. Empirically observed good generalization performance on test data, even in the presence of lots of label noise, corroborate such a procedure. On the other hand, in statistical learning theory it is known that over-fitting models may lead to poor generalization properties, occurring in e.g. empirical risk minimization (ERM) over too large hypotheses classes. Inspired by this contradictory behavior, so-called interpolation methods have recently received much attention, leading to consistent and optimally learning methods for some local averaging schemes with zero training error. However, there is no theoretical analysis of interpolating ERM-like methods so far. We take a step in this direction by showing that for certain, large hypotheses classes, some interpolating ERMs enjoy very good statistical guarantees while others fail in the worst sense. Moreover, we show that the same phenomenon occurs for DNNs with zero training error and sufficiently large architectures.

Citations (2)

Summary

We haven't generated a summary for this paper yet.