Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Tensorized Neural Networks with Automatic Rank Selection (1905.10478v1)

Published 24 May 2019 in cs.LG and stat.ML

Abstract: Tensor decomposition is an effective approach to compress over-parameterized neural networks and to enable their deployment on resource-constrained hardware platforms. However, directly applying tensor compression in the training process is a challenging task due to the difficulty of choosing a proper tensor rank. In order to achieve this goal, this paper proposes a Bayesian tensorized neural network. Our Bayesian method performs automatic model compression via an adaptive tensor rank determination. We also present approaches for posterior density calculation and maximum a posteriori (MAP) estimation for the end-to-end training of our tensorized neural network. We provide experimental validation on a fully connected neural network, a CNN and a residual neural network where our work produces $7.4\times$ to $137\times$ more compact neural networks directly from the training.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Cole Hawkins (15 papers)
  2. Zheng Zhang (488 papers)
Citations (48)

Summary

We haven't generated a summary for this paper yet.