Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Three dimensions, two microscopes, one code: automatic differentiation for x-ray nanotomography beyond the depth of focus limit (1905.10433v1)

Published 24 May 2019 in eess.IV, physics.app-ph, and physics.optics

Abstract: Conventional tomographic reconstruction algorithms assume that one has obtained pure projection images, involving no within-specimen diffraction effects nor multiple scattering. Advances in x-ray nanotomography are leading towards the violation of these assumptions, by combining the high penetration power of x-rays which enables thick specimens to be imaged, with improved spatial resolution which decreases the depth of focus of the imaging system. We describe a reconstruction method where multiple scattering and diffraction effects in thick samples are modeled by multislice propagation, and the 3D object function is retrieved through iterative optimization. We show that the same proposed method works for both full-field microscopy, and for coherent scanning techniques like ptychography. Our implementation utilizes the optimization toolbox and the automatic differentiation capability of the open-source deep learning package TensorFlow, which demonstrates a much straightforward way to solve optimization problems in computational imaging, and endows our program great flexibility and portability.

Citations (32)

Summary

We haven't generated a summary for this paper yet.