Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Three-dimensional central-moments-based lattice Boltzmann method with external forcing: A consistent, concise and universal formulation (1905.10182v4)

Published 24 May 2019 in physics.comp-ph and physics.flu-dyn

Abstract: The cascaded or central-moments-based lattice Boltzmann method (CM-LBM) is a robust alternative to the more conventional BGK-LBM for the simulation of high-Reynolds number flows. Unfortunately, its original formulation makes its extension to a broader range of physics quite difficult. To tackle this issue, a recent work [A. De Rosis, Phys. Rev. E 95, 013310 (2017)] proposed a more generic way to derive concise and efficient three-dimensional CM-LBMs. Knowing the original model also relies on central moments that are derived in an adhoc manner, i.e., by mimicking those of the Maxwell-Boltzmann distribution to ensure their Galilean invariance a posteriori, a very recent effort [A. De Rosis and K. H. Luo, Phys. Rev. E 99, 013301 (2019)] was proposed to further generalize their derivation. The latter has shown that one could derive Galilean invariant CMs in a systematic and a priori manner by taking into account high-order Hermite polynomials in the derivation of the discrete equilibrium state. Combining these two approaches, a compact and mathematically sound formulation of the CM-LBM with external forcing is proposed. More specifically, the proposed formalism fully takes advantage of the D3Q27 discretization by relying on the corresponding set of 27 Hermite polynomials (up to the sixth order) for the derivation of both the discrete equilibrium state and the forcing term. The present methodology is more consistent than previous approaches, as it properly explains how to derive Galilean invariant CMs of the forcing term in an a priori manner. Furthermore, while keeping the numerical properties of the original CM-LBM, the present work leads to a compact and simple algorithm, representing a universal methodology based on CMs and external forcing within the lattice Boltzmann framework.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com