Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Shallow Networks for Binary Classification (1905.10161v2)

Published 24 May 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Data driven classification that relies on neural networks is based on optimization criteria that involve some form of distance between the output of the network and the desired label. Using the same mathematical analysis, for a multitude of such measures, we can show that their optimum solution matches the ideal likelihood ratio test classifier. In this work we introduce a different family of optimization problems which is not covered by the existing approaches and, therefore, opens possibilities for new training algorithms for neural network based classification. We give examples that lead to algorithms that are simple in implementation, exhibit stable convergence characteristics and are antagonistic to the most popular existing techniques.

Citations (2)

Summary

We haven't generated a summary for this paper yet.