Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FSD: Feature Skyscraper Detector for Stem End and Blossom End of Navel Orange (1905.09994v2)

Published 24 May 2019 in cs.CV

Abstract: To accurately and efficiently distinguish the stem end and the blossom end of navel orange from its black spots, we propose a feature skyscraper detector (FSD) with low computational cost, compact architecture and high detection accuracy. The main part of the detector is inspired from small object that stem (blossom) end is complex and black spot is densely distributed, so we design the feature skyscraper networks (FSN) based on dense connectivity. In particular, FSN is distinguished from regular feature pyramids, and which provides more intensive detection of high-level features. Then we design the backbone of the FSD based on attention mechanism and dense block for better feature extraction to the FSN. In addition, the architecture of the detector is also added Swish to further improve the accuracy. And we create a dataset in Pascal VOC format annotated three types of detection targets the stem end, the blossom end and the black spot. Experimental results on our orange data set confirm that FSD has competitive results to the state-of-the-art one-stage detectors like SSD, DSOD, YOLOv2, YOLOv3, RFB and FSSD, and it achieves 87.479%mAP at 131 FPS with only 5.812M parameters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiaoye Sun (3 papers)
  2. Gongyan Li (4 papers)
  3. Shaoyun Xu (4 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.