Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Riesz distributions and Laplace transform in the Dunkl setting of type A (1905.09493v2)

Published 23 May 2019 in math.CA and math.RT

Abstract: We study Riesz distributions in the framework of rational Dunkl theory associated with root systems of type A. As an important tool, we employ a Laplace transform involving the associated Dunkl kernel, which essentially goes back to Macdonald, but was so far only established at a formal level. We give a rigorous treatment of this transform based on suitable estimates of the type A Dunkl kernel. Our main result is a precise analogue in the Dunkl setting of a well-known result by Gindikin, stating that a Riesz distribution on a symmetric cone is a positive measure if and only if its exponent is contained in the Wallach set. For Riesz distributions in the Dunkl setting, we obtain an analogous characterization in terms of a generalized Wallach set which depends on the multiplicity parameter on the root system.

Summary

We haven't generated a summary for this paper yet.