Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elliptical Perturbations for Differential Privacy (1905.09420v2)

Published 23 May 2019 in cs.CR, math.ST, and stat.TH

Abstract: We study elliptical distributions in locally convex vector spaces, and determine conditions when they can or cannot be used to satisfy differential privacy (DP). A requisite condition for a sanitized statistical summary to satisfy DP is that the corresponding privacy mechanism must induce equivalent measures for all possible input databases. We show that elliptical distributions with the same dispersion operator, $C$, are equivalent if the difference of their means lies in the Cameron-Martin space of $C$. In the case of releasing finite-dimensional projections using elliptical perturbations, we show that the privacy parameter $\ep$ can be computed in terms of a one-dimensional maximization problem. We apply this result to consider multivariate Laplace, $t$, Gaussian, and $K$-norm noise. Surprisingly, we show that the multivariate Laplace noise does not achieve $\ep$-DP in any dimension greater than one. Finally, we show that when the dimension of the space is infinite, no elliptical distribution can be used to give $\ep$-DP; only $(\epsilon,\delta)$-DP is possible.

Citations (12)

Summary

We haven't generated a summary for this paper yet.