Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Restricted Spatial Regression Methods: Implications for Inference (1905.09371v3)

Published 22 May 2019 in stat.ME, math.ST, and stat.TH

Abstract: The issue of spatial confounding between the spatial random effect and the fixed effects in regression analyses has been identified as a concern in the statistical literature. Multiple authors have offered perspectives and potential solutions. In this paper, for the areal spatial data setting, we show that many of the methods designed to alleviate spatial confounding can be viewed as special cases of a general class of models. We refer to this class as Restricted Spatial Regression (RSR) models, extending terminology currently in use. We offer a mathematically based exploration of the impact that RSR methods have on inference for regression coefficients for the linear model. We then explore whether these results hold in the generalized linear model setting for count data using simulations. We show that the use of these methods have counterintuitive consequences which defy the general expectations in the literature. In particular, our results and the accompanying simulations suggest that RSR methods will typically perform worse than non-spatial methods. These results have important implications for dimension reduction strategies in spatial regression modeling. Specifically, we demonstrate that the problems with RSR models cannot be fixed with a selection of "better" spatial basis vectors or dimension reduction techniques.

Summary

We haven't generated a summary for this paper yet.