2000 character limit reached
Topological cyclic homology (1905.08984v1)
Published 22 May 2019 in math.KT and math.AT
Abstract: This survey of topological cyclic homology is a chapter in the Handbook on Homotopy Theory. We give a brief introduction to topological cyclic homology and the cyclotomic trace map following Nikolaus-Scholze, followed by a proof of B\"okstedt periodicity that closely resembles B\"okstedt's original unpublished proof. We explain the extension of B\"{o}kstedt periodicity by Bhatt-Morrow-Scholze from perfect fields to perfectoid rings and use this to give a purely p-adic proof of Bott periodicity. Finally, we evaluate the cofiber of the assembly map in p-adic topological cyclic homology for the cyclic group of order p and a perfectoid ring of coefficients.