Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segmentation-Aware Image Denoising without Knowing True Segmentation (1905.08965v1)

Published 22 May 2019 in cs.CV

Abstract: Several recent works discussed application-driven image restoration neural networks, which are capable of not only removing noise in images but also preserving their semantic-aware details, making them suitable for various high-level computer vision tasks as the pre-processing step. However, such approaches require extra annotations for their high-level vision tasks, in order to train the joint pipeline using hybrid losses. The availability of those annotations is yet often limited to a few image sets, potentially restricting the general applicability of these methods to denoising more unseen and unannotated images. Motivated by that, we propose a segmentation-aware image denoising model dubbed U-SAID, based on a novel unsupervised approach with a pixel-wise uncertainty loss. U-SAID does not need any ground-truth segmentation map, and thus can be applied to any image dataset. It generates denoised images with comparable or even better quality, and the denoised results show stronger robustness for subsequent semantic segmentation tasks, when compared to either its supervised counterpart or classical "application-agnostic" denoisers. Moreover, we demonstrate the superior generalizability of U-SAID in three-folds, by plugging its "universal" denoiser without fine-tuning: (1) denoising unseen types of images; (2) denoising as pre-processing for segmenting unseen noisy images; and (3) denoising for unseen high-level tasks. Extensive experiments demonstrate the effectiveness, robustness and generalizability of the proposed U-SAID over various popular image sets.

Citations (17)

Summary

We haven't generated a summary for this paper yet.