Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Corpus Augmentation by Sentence Segmentation for Low-Resource Neural Machine Translation (1905.08945v1)

Published 22 May 2019 in cs.CL

Abstract: Neural Machine Translation (NMT) has been proven to achieve impressive results. The NMT system translation results depend strongly on the size and quality of parallel corpora. Nevertheless, for many language pairs, no rich-resource parallel corpora exist. As described in this paper, we propose a corpus augmentation method by segmenting long sentences in a corpus using back-translation and generating pseudo-parallel sentence pairs. The experiment results of the Japanese-Chinese and Chinese-Japanese translation with Japanese-Chinese scientific paper excerpt corpus (ASPEC-JC) show that the method improves translation performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jinyi Zhang (9 papers)
  2. Tadahiro Matsumoto (2 papers)
Citations (30)