Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A sparse grid discontinuous Galerkin method for the high-dimensional Helmholtz equation with variable coefficients (1905.08917v2)

Published 22 May 2019 in math.NA and cs.NA

Abstract: The simulation of high-dimensional problems with manageable computational resource represents a long-standing challenge. In a series of our recent work [25, 17, 18, 24], a class of sparse grid DG methods has been formulated for solving various types of partial differential equations in high dimensions. By making use of the multiwavelet tensor-product bases on sparse grids in conjunction with the standard DG weak formulation, such a novel method is able to significantly reduce the computation and storage cost compared with full grid DG counterpart, while not compromising accuracy much for sufficiently smooth solutions. In this paper, we consider the high-dimensional Helmholtz equation with variable coefficients and demonstrate that for such a problem the efficiency of the sparse grid DG method can be further enhanced by exploring a semi-orthogonality property associated with the multiwavelet bases, motivated by the work [21, 22, 19]. The detailed convergence analysis shows that the modified sparse grid DG method attains the same order accuracy, but the resulting stiffness matrix is much sparser than that by the original method, leading to extra computational savings. Numerical tests up to six dimensions are provided to verify the analysis.

Summary

We haven't generated a summary for this paper yet.