Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower semicontinuity and relaxation of nonlocal $L^\infty$-functionals (1905.08832v4)

Published 21 May 2019 in math.AP

Abstract: We study variational problems involving nonlocal supremal functionals $L\infty(\Omega;\mathbb{R}m) \ni u\mapsto {\rm ess sup}_{(x,y)\in \Omega\times \Omega} W(u(x), u(y)),$ where $\Omega\subset \mathbb{R}n$ is a bounded, open set and $W:\mathbb{R}m\times\mathbb{R}m\to \mathbb{R}$ is a suitable function. Motivated by existence theory via the direct method, we identify a necessary and sufficient condition for $L\infty$-weak$\ast$ lower semicontinuity of these functionals, namely, separate level convexity of a symmetrized and suitably diagonalized version of the supremands. More generally, we show that the supremal structure of the functionals is preserved during the process of relaxation. Whether the same statement holds in the related context of double-integral functionals is currently still open. Our proof relies substantially on the connection between supremal and indicator functionals. This allows us to recast the relaxation problem into characterizing weak$\ast$ closures of a class of nonlocal inclusions, which is of independent interest. To illustrate the theory, we determine explicit relaxation formulas for examples of functionals with different multi-well supremands.

Summary

We haven't generated a summary for this paper yet.