Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Borrow from Anywhere: Pseudo Multi-modal Object Detection in Thermal Imagery (1905.08789v2)

Published 21 May 2019 in cs.CV

Abstract: Can we improve detection in the thermal domain by borrowing features from rich domains like visual RGB? In this paper, we propose a pseudo-multimodal object detector trained on natural image domain data to help improve the performance of object detection in thermal images. We assume access to a large-scale dataset in the visual RGB domain and relatively smaller dataset (in terms of instances) in the thermal domain, as is common today. We propose the use of well-known image-to-image translation frameworks to generate pseudo-RGB equivalents of a given thermal image and then use a multi-modal architecture for object detection in the thermal image. We show that our framework outperforms existing benchmarks without the explicit need for paired training examples from the two domains. We also show that our framework has the ability to learn with less data from thermal domain when using our approach. Our code and pre-trained models are made available at https://github.com/tdchaitanya/MMTOD

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (115)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com