Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bivariate Semialgebraic Splines (1905.08438v2)

Published 21 May 2019 in math.AC, cs.NA, and math.NA

Abstract: Semialgebraic splines are bivariate splines over meshes whose edges are arcs of algebraic curves. They were first considered by Wang, Chui, and Stiller. We compute the dimension of the space of semialgebraic splines in two extreme cases. If the polynomials defining the edges span a three-dimensional space of polynomials, then we compute the dimensions from the dimensions for a corresponding rectilinear mesh. If the mesh is sufficiently generic, we give a formula for the dimension of the spline space valid in large degree and bound how large the degree must be for the formula to hold. We also study the dimension of the spline space in examples which do not satisfy either extreme. The results are derived using commutative and homological algebra.

Citations (4)

Summary

We haven't generated a summary for this paper yet.