Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A strongly irreducible affine iterated function system with two invariant measures of maximal dimension (1905.08299v2)

Published 20 May 2019 in math.DS and math.MG

Abstract: A classical theorem of Hutchinson asserts that if an iterated function system acts on $\mathbb{R}d$ by similitudes and satisfies the open set condition then it admits a unique self-similar measure with Hausdorff dimension equal to the dimension of the attractor. In the class of measures on the attractor which arise as the projections of shift-invariant measures on the coding space, this self-similar measure is the unique measure of maximal dimension. In the context of affine iterated function systems it is known that there may be multiple shift-invariant measures of maximal dimension if the linear parts of the affinities share a common invariant subspace, or more generally if they preserve a finite union of proper subspaces of $\mathbb{R}d$. In this note we construct examples where multiple invariant measures of maximal dimension exist even though the linear parts of the affinities do not preserve a finite union of proper subspaces.

Summary

We haven't generated a summary for this paper yet.